Ultrasound responsive block copolymer micelle of poly(ethylene glycol)–poly(propylene glycol) obtained through click reaction
نویسندگان
چکیده
منابع مشابه
High-frequency ultrasound-responsive block copolymer micelle.
Micelles of a diblock copolymer composed of poly(ethylene oxide) and poly(2-tetrahydropyranyl methacrylate) (PEO-b-PTHPMA) in aqueous solution could be disrupted by high-frequency ultrasound (1.1 MHz). It was found that, upon exposure to a high-intensity focused ultrasound (HIFU) beam at room temperature, the pH value of the micellar solution decreased over irradiation time. The infrared spectr...
متن کاملBlock copolymer micelle nanolithography
Au-nanoclusters between 2 and 8 nm in diameter were deposited onto solid substrates in different pattern geometries. The basis of this approach is the self-assembly of polystyrene-b-poly[2-vinylpyridine (HAuCl4)] diblock copolymer micelles into uniform monomicellar films on solid supports such as Si-wafers or glass cover slips. HAuCl4 as metallic precursor or a single solid Au-nanoparticle caus...
متن کاملPolyion complex micelle formed from tetraphenylethene containing block copolymer
BACKGROUND Polymeric micelles attract great attention in drug delivery and therapeutics. Various types of block copolymers have been designed for the application in biomedical fields. If we can introduce additional functional groups to the block copolymers, we can achieve advanced applications. In this regards, we tried to introduce aggregation induced emission enhancement (AIE) unit in the blo...
متن کاملHollow capsules prepared from all block copolymer micelle multilayers.
We introduce a novel and versatile approach for preparing hollow multilayer capsules containing functional hydrophobic components. Protonated polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) and anionic polystyrene-block-poly(acrylic acid) (PS-b-PAA) block copolymer micelles (BCM) were used as building blocks for the layer-by-layer assembly of BCM multilayer films onto polystyrene (PS) collo...
متن کاملA new class of dual responsive self-healable hydrogels based on a core crosslinked ionic block copolymer micelle prepared via RAFT polymerization and Diels-Alder "click" chemistry.
Amphiphilic diblock copolymers of poly(furfuryl methacrylate) (PFMA) with cationic poly(2-(methacryloyloxy)ethyltrimethyl ammonium chloride) (PFMA-b-PMTAC) and anionic poly(sodium 4-vinylbenzenesulfonate) (PFMA-b-PSS) were prepared via reversible addition fragmentation chain-transfer (RAFT) polymerization by using PFMA as a macro-RAFT agent. The formation of the block copolymer was confirmed by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ultrasonics Sonochemistry
سال: 2016
ISSN: 1350-4177
DOI: 10.1016/j.ultsonch.2015.11.023